Multiple people are looking at the Simcenter E-machine design solution on a laptop.

Simcenter

E-machine design

Simcenter facilitates the design and optimization of e-machines (electric motors and generators). These tools enable engineers to optimize e-machines accounting for 2D axisymmetric, 2D translational, 3D, Static, Transient, Time Harmonic, Current Flow and thermal behaviors that affect performance.

Handle any motor topology

Simcenter electric motor software technologies include both fast analytical equivalent circuits and accurate automated finite element analysis (FEA) simulations. 

Using a template-based interface makes it easy-to-use and flexible to handle practically any motor topology, with provisions for custom rotors and stators. With FEA automation technology, performance parameters, waveforms and field plots are available with just a click.

E-machine cooling simulation, the easy way

Stay integrated in one simulation ecosystem

E-machine design capabilities

AC electromagnetic simulation

AC electromagnetic simulations are based on a single frequency, which reduces the simulation time. With this approach, you can simulate electromagnetic fields in and around current-carrying conductors, in the presence of isotropic materials that may be conducting, magnetic, or both. This accounts for displacement currents, eddy-current and proximity effects, which are important in hotspots analysis.

交流電磁界シミュレーションのビジュアル。

Advanced electromagnetic material modeling

The accuracy of low-frequency electromagnetic simulations is highly dependent on material data. Simcenter electromagnetic advanced material modeling accounts for nonlinearities, temperature dependencies, demagnetization of permanent magnets, hysteresis loss and anisotropic effects. This makes it possible to analyze effects such as demagnetization in permanent magnets to verify their service life, analyze frequency dependent losses in thin parts while reducing solution time, and account for all losses for an accurate energy balance.

高度な電磁界材料モデリングのビジュアル。

Circuit and system modeling

System-level or model-based analysis requires accurate sub-component models to account for interactions and local transients that affect the overall system behavior. 

Simcenter low-frequency electromagnetics includes capabilities such as native circuit simulations, connections for co-simulation and exporting of 1D system models for Simcenter Flomaster, Simcenter Amesim and other platforms.

A representation of circuit & system modeling.

Electric field simulations

System-level or model-based analysis requires accurate sub-component models to account for interactions and local transients that affect the overall system behavior. 

Simcenter low-frequency electromagnetics includes capabilities such as native circuit simulations, connections for co-simulation and exporting of 1D system models for Simcenter Flomaster, Simcenter Amesim and other platforms.

電界シミュレーションのビジュアル。

Electromagnetic-motion simulation

The electromagnetic simulation of transient fields can include motion. It is possible to simulate rotational, linear and arbitrary motion with six degrees of freedom (X, Y, Z, Roll, Pitch and Yaw). This is available for an unlimited number of moving components, induced currents and mechanical interactions. 

The mechanical effects include viscous friction, inertia, mass, springs and gravitation, as well as constraints on movement imposed by mechanical stops. Arbitrary load forces can be specified as a function of position, speed and time. Induced currents due to motion are taken into account. 

電磁界モーション・シミュレーションのビジュアル。

過渡電磁界シミュレーション

材料の非線形性や周波数依存の影響を伴う、時間的に変化する任意形状の電流または電圧源と出力を含む複雑な問題のシミュレーションを可能にします。これには、電気機械装置の振動、永久磁石の消磁、スイッチング効果、渦電流誘導トルク、表皮効果、近接効果が含まれます。

過渡電磁界シミュレーションのビジュアル。