客户期望更安静的产品,而相关竞争永无止境,因此声品质可以成为产品差异化因素。噪音法规日益收紧,会影响产品销售。Simcenter 声学仿真解决方案有助于减少声场预测时间,并可将发动机试车等复杂工作的时间缩短数周。
Simcenter 在集成式解决方案中提供内场和外场声学仿真,可帮助您在设计早期做出明智决策,从而优化产品的声学性能。可扩展的一体化建模环境与高效的求解器和易于解读的可视化功能恰当地结合在一起,让您能够快速获得对产品声学性能的洞察。
客户期望更安静的产品,而相关竞争永无止境,因此声品质可以成为产品差异化因素。噪音法规日益收紧,会影响产品销售。Simcenter 声学仿真解决方案有助于减少声场预测时间,并可将发动机试车等复杂工作的时间缩短数周。
Simcenter 在集成式解决方案中提供内场和外场声学仿真,可帮助您在设计早期做出明智决策,从而优化产品的声学性能。可扩展的一体化建模环境与高效的求解器和易于解读的可视化功能恰当地结合在一起,让您能够快速获得对产品声学性能的洞察。
Read how Mazda is perfecting in-vehicle audio with model-based development and full-vehicle simulation using Simcenter 3D and HEEDS to optimize audio acoustic performance and reduce simulation from 2.5 days to 4 hours.
公司:Mazda Motor Corporation, Mazda Engineering and Technology
行业:汽车及交通运输行业
位置:Fuchū, Hiroshima, Japan
Siemens 软件:HEEDS, Simcenter 3D Solutions
声学仿真离不开标准有限元建模功能之外的专用功能。您通常需要对风量和要测量声压的区域等内容进行建模。Simcenter 提供曲面包络、凸网格划分、网格加厚及创建混合(六四)网格等您所需的高级功能,与传统预处理器相比,可帮助您加快声学网格划分流程。它还提供结构和流体的各种材料模型,以及各种结构和声学边界条件和载荷,让您可以高效设置分析。
用于声学分析的有限元法是室内声学问题仿真的理想选择。声学有限元法不仅在解算速度方面更为高效,还让您可以进行声振耦合分析,同时将结构模态和隔音材料考虑在内。声学有限元法还可以轻松用于解决外部声学问题,例如动力总成组件(例如进气系统、变速箱或全电动驱动单元)的噪声辐射分析。
声学边界元法通常用于解决外场声学问题,对于声学有限元法难以建模的复杂几何体更是理想选择。声学边界元法只需要几何体的外表面网格,因此有助于简化外部声学仿真。这不仅简化了建模过程,还降低了仿真模型中的自由度,使分析变得更轻松。
流动引起的气动声学噪声是车辆等产品声学特征的重要组成部分。良好声学设计的关键在于预测和了解噪声产生机制、定位声源、识别传输路径及预测系统声学响应。通过 Simcenter,您可以全面了解噪声预测,从而制定有效的设计对策。这可确保您的产品保持理想声品质和市场竞争优势。
示例应用:供暖、通风和空调 (HVAC) 和环境控制系统 (ECS) 管道、火车转向架和受电弓、冷却风扇、船舶和飞机螺旋桨等产生的噪声。
在 CFD 解算方案计算所得的发出噪声的湍流附近创建气动声源,并计算其在外部或内部环境中的声学响应。在气动振动声学应用中,流动湍流可能同时在结构上引入空气动力学和气动声学压力,而结构以振动响应。这些振动导致声波在周围空气中辐射。例如,您可以预测由作用在窗户和结构体上的风荷载引起的汽车和飞机内部舱室噪音。这些分析开始时的压力载荷可以通过软件中的 CFD 解决方案或一套湍流边界层模型获得。
When the acoustics problems you need to solve involve very large geometries or very high frequencies, then FEM and BEM solutions become too expensive to solve.
Ray Acoustics is used to predict acoustic responses up to very high frequencies and for very large geometries, in both enclosed and unbounded domains. Unlike FEM or BEM acoustic solvers, ray acoustics exploits the fact that at high Helmholtz numbers, sound propagation can be simulated by ray tracing (a technique also used to simulate high frequency electromagnetics and lighting). Therefore it only requires the mesh to correctly represent the topology of the product and not a fine discretization of the domain. As a result, the solution is not bounded by an upper frequency limit or the model size and solving is done orders of magnitude faster as compared to FEM or BEM solutions.
How can you tell what your product really sounds like by looking at charts and graphs from your simulation? You can't. But Simcenter gives you the ability to listen to your product before you build it.
Acoustics auralization immerses you into a virtual acoustic environment where you can
evaluate the acoustic performance of your designs by listening to simulation results rather than only looking at plots and curves. You can create listening scenarios based on simulated or externally recorded sources and simulated transfer functions obtained from either FEM, BEM or ray acoustics solutions. With acoustics auralization, you can visualize the resulting time data, listen to the scenario and make changes to the individual tracks to improve the sound quality of your product. You can additionally quantitatively evaluate the sound quality based on dedicated loudness and sharpness metrics.